MATH 320 NOTES, WEEK 15

5.4 Invariant Subspaces and Cayley-Hamilton theorem

The goal of this section is to prove the Cayley-Hamilton theorem:

Theorem 1. Let $T: V \to V$ be a linear operator, V finite dimensional, and let f(t) be the characteristic polynomial of T. Then $f(T) = T_0$ i.e. the zero linear transformation. In other words T is a root of its own characteristic polynomial.

Here, if $f(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$, plugging in T means the transformation

$$f(T) = a_n T^n + a_{n-1} T^{n-1} + \dots + a_1 T + a_0 I$$

Let us give some simple examples:

Example 1 The identity $I: F^3 \to F^3$ has characteristic polynomial $f(t) = (1-t)^3$. Then $f(I) = (I-I)^3 = T_0$. **Example 2** Let $A = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Then the characteristic polynomial is $f(t) = (1-t)^2(2-t)$, and $f(A) = (A-I)^2(2I_3-A) = \begin{pmatrix} 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^2 \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O.$

We will prove the main theorem by using invariant subspaces and showing that if W is T-invariant, then the characteristic polynomial of $T \upharpoonright W$ divides the characteristic polynomial of T. So, let us recall the definition of a T-invariant space:

Definition 2. Given a linear transformation $T: V \to V$, a subspace $W \subset V$ is called **T-invariant** if for all $x \in W$, $T(x) \in W$. For such a W, let $T_W: W \to W$ denote the linear transformation obtained by restricting T to W i.e. for all $x \in W$, $T_W(x) = T(x) \in W$.

Examples:

(1) $V, \{\vec{0}\},$

(2) $\ker(T)$, $\operatorname{ran}(T)$,

(3) E_{λ} for any eigenvalue λ for T.

Let us prove the last item: suppose that $v \in E_{\lambda}$. We have to show that $T(v) \in E_{\lambda}$. Denote y = T(v) and compute

$$T(y) = T(T(v)) = T(\lambda v) = \lambda T(v) = \lambda y.$$

So, y is also an eigenvector for λ . Then $y = T(v) \in E_{\lambda}$ as desired.

Next we give another important example of an invariant subspace.

Lemma 3. Suppose that $T: V \to V$ is a linear transformation, and let $x \in V$. Then

$$W := Span(\{x, T(x), T^{2}(x), ...\})$$

is a T-invariant subspace. Moreover, if Z is any other T-invariant subspace that contains x, then $W \subset Z$.

Proof. First we show that W is T-invariant: let $y \in W$. We have to show that $T(y) \in W$. Since $y \in W$, by definition, for some natural number n, $y = T^n(x)$. Then $T(y) = T^{n+1}(x) \in W$.

Now suppose that Z is another T-invariant subspace with $x \in Z$.

Claim 4. For every $n \ge 1$, $T^n(x) \in Z$.

Proof. For the base case n = 1, since $x \in Z$ and Z is T-invariant, it follows that $T(x) \in Z$.

For the inductive case, suppose that $T^n(x) \in Z$. Then again, by Tinvariance, we have that $T^{n+1}(x) \in Z$.

By the claim, we get that $W \subset Z$.

W as above is called the T-cyclic subspace of V generated by x.

Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $T(\langle a, b, c \rangle) = \langle 2a, a + b, 0 \rangle$. Example. Find the *T*-cyclic subspace of *V* generated by e_1 . Solution:

• $T(e_1) = \langle 2, 1, 0 \rangle$, • $T^2(e_1) = T(\langle 2, 1, 0 \rangle) = \langle 4, 3, 0 \rangle$, and so on

Note that $T^2(e_1)$ is a linear combination of $e_1, T(e_1)$. Similarly, for any n, $T^n(e_1) = \langle a_1, a_2, 0 \rangle$ for some a_1, a_2 , and so it is a linear combination of e_1 and $T(e_1)$. It follows, that the T-cyclic subspace of V generated by e_1 is $Span(\{e_1, T(e_1)\}) = \{ \langle a_1, a_2, 0 \rangle \mid a_1, a_2 \in \mathbb{R} \} = Span(\{e_1, e_2\}).$

Our next lemma generalizes the above example:

Lemma 5. Suppose that $T: V \to V$ is linear, let W be the T-invariant cyclic subspace generated by x (nonzero vector) with $\dim(W) = k$. Then $\{x, T(x), ..., T^{k-1}(x)\}$ is a basis for W

Proof. Let m be the largest such that $\alpha = \{x, T(x), ..., T^{m-1}(x)\}$ is a linearly independent. Such m has to exist because W is finite dimensional. Then we have:

- $m \leq k$, since $\alpha \subset W$ and dim(W) = k, and
- $T^m(x) \in Span(\alpha)$, by definition of m.

Let $Z = Span(\alpha)$. We claim that Z = W. We know that $Z \subset W$ because $\alpha \subset W$. For the other direction, by the second part of Lemma 3, it is enough to show that Z is T-invariant.

To that end, let $y \in Z$; write is a linear combination of the vectors in α ,

$$y = a_1 x + a_2 T(x) + \dots + a_m T^{m-1}(x)$$

Compute

 $T(y) = T(a_1x + a_2T(x) + \dots + a_mT^{m-1}(x)) = a_1T(x) + a_2T^2(x) + \dots + a_mT^m(x).$ This is a linear combination of vectors in α and $T^m(x)$. Since $T^m(x) \in Span(\alpha)$, we get $T(y) \in Span(\alpha) = Z$.

Then α is a basis for W, and so $m = |\alpha| = k$.

Before we prove that the characteristic polynomial of T_W divides the characteristic polynomial of T where W is T-invariant, we need the following fact.

Fact 6. Suppose we have an $n \times n$ matrix B of the form

$$B = \begin{pmatrix} A & C \\ 0 & D \end{pmatrix},$$

Where A is a $k \times k$ matrix. Then $det(A) \cdot det(D)$

Proof. The proof is by induction on k, expanding along the first column. \Box

Lemma 7. Suppose that $T: V \to V$ is linear, V finite dimensions, and W is a T-invariant subspace. Let $T_W: W \to W$ be the linear transformation obtained by T restricted to W. Then the characteristic polynomial of T_W divides the characteristic polynomial of T.

Proof. Let $\alpha = \{v_1, ..., v_k\}$ be a basis for W, and extend α to a basis $\beta = \{v_1, ..., v_k, ..., v_n\}$ for V. Let $A = [T_W]_{\alpha}$ and $B = [T]_{\beta}$. Then

$$B = \begin{pmatrix} A & C \\ 0 & D \end{pmatrix}$$

So,

$$(B - tI_n) = \begin{pmatrix} A - tI_k & C \\ 0 & D - tI_{n-k} \end{pmatrix}$$

Then $\det(B - tI_n) = \det(A - tI_n)g(t)$. Since the characteristic polynomial of T_W is $\det(A - tI_n)$ and the characteristic polynomial of T is $\det(B - tI_n)$, the result follows.

Lemma 8. Suppose that $T: V \to V$ is linear, V finite dimensional, and let W be the T-invariant cyclic subspace generated by x (nonzero vector) with $\dim(W) = k$. Then there are unique scalars $a_0, ..., a_{k-1}$, such that

• $a_0x + a_1T(x) + \dots + a_{k-1}T^{k-1}(x) + T^k(x) = \vec{0}$, and

• the characteristic polynomial of T_W is

$$f(t) = (-1)^k (a_0 + a_1 t + \dots a_{k-1} t^{k-1} + t^k).$$

Proof. Recall that we proved $\alpha = \{x, T(x), ..., T^{k-1}(x)\}$ is a basis for W. That means that $T^k(x)$ is the span of these vectors and the linear combination is unique. So for some unique scalars $a_0, ..., a_{k-1}$, we get:

$$a_0x + a_1T(x) + \dots + a_{k-1}T^{k-1}(x) + T^k(x) = \vec{0}.$$

Next we compute $[T_W]_{\alpha}$. We have:

- $T_W(x) = 0x + T(x) + 0... + 0$, so $[T_W(x)]_{\alpha} = \langle 0, 1, 0, ... 0 \rangle$,
- $T_W(T(x)) = T^2(x) = T_W^2(x)$, so $[T_W(x)]_{\alpha} = \langle 0, 0, 1, ...0 \rangle$,
- ...

•
$$T_W(T^{k-1}(x)) = T^k(x) = -1(a_0x + a_1T(x) + \dots a_{k-1}T^{k-1}(x))$$
, and so $[T_W(T^{k-1}(x))]_{\alpha} = \langle -a_0, -a_1, \dots - a_{k-1} \rangle$,

Then

$$[T_W]_{\alpha} = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_1 \\ 1 & 0 & \dots & 0 & -a_2 \\ \vdots & & & \\ 0 & 0 & \dots & 1 & -a_{k-1} \end{pmatrix}$$

One can verify that this matrix has characteristic polynomial

$$f(t) = (-1)^k (a_0 + a_1 t + \dots a_{k-1} t^{k-1} + t^k)$$

We are finally ready to prove the Cayley-Hamilton theorem:

Proof of Theorem 1. We have to show that T "satisfies" its characteristic polynomial. So let f(t) be the characteristic polynomial of T. Then we have to show that f(T) is the zero linear transformation. So let $x \in V$. We have to show that $f(T)(x) = \vec{0}$.

Assume that x is nonzero (otherwise it's clear). Let W be the T-cyclic invariant subspace generated by x; $\dim(W) = k$. By the above lemma, fix coefficients $a_0, ..., a_k$, such that

- $a_0x + a_1T(x) + \dots a_{k-1}T^{k-1}(x) + T^k(x) = \vec{0}$, and
- the characteristic polynomial of T_W is

$$g(t) = (-1)^k (a_0 + a_1 t + \dots a_{k-1} t^{k-1} + t^k).$$

Then,

$$g(T)(x) = (-1)^{k} (a_0 I + a_1 T + \dots a_{k-1} T^{k-1} + T^k)(x) =$$

(-1)^k (a_0 x + a_1 T(x) + \dots a_{k-1} T^{k-1}(x) + T^k(x)) = \vec{0}.

And since g divides f, we get that f(T)(x) = 0.

6.1, 6.2 Inner Product Spaces and ONB

Let $c \in F$, we will use \bar{c} to denote complex conjugation. I.e. if c = a + bi, then $\bar{c} = a - bi$. If $c \in \mathbb{R}$, then $\bar{c} = c$.

Definition 9. Let V be a vector space over F. V is an inner product space, if we can define an inner product function on pairs of vectors to values in F,

$$(x,y) \mapsto \langle x,y \rangle \in F$$

with the following properties:

(1) $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$ (2) $\langle cx, y \rangle = c \langle x, y \rangle$, (3) $\langle x, y \rangle = \langle y, x \rangle$, (4) if $x \neq \vec{0}$, $\langle x, x \rangle > 0$,

Definition 10. Let V be an inner product space. For $x \in V$, define the norm of x,

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Lemma 11. (Properties of inner product spaces) Let V be an inner product space, and $x, y, z \in V$, $c \in F$. Then

- (1) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- (2) $\langle x, cy \rangle = \bar{c} \langle x, y \rangle$,
- $(3) \ \langle x,0\rangle = \langle 0,x\rangle = 0,$
- (4) $\langle x, x \rangle = 0$ iff if $x = \vec{0}$,
- (5) if $\langle x, y \rangle = \langle x, z \rangle$ for all x, then y = z.

Lemma 12. (Properties of norms) Let V be an inner product space over F, and $x, y, z \in V$, $c \in F$. Then

- (1) $||cx|| = |c| \cdot ||x||,$
- (2) $||x|| \ge 0$, ||x|| = 0 iff if $x = \vec{0}$,
- (3) (Cauchy-Schwarz inequality) $|\langle x, y \rangle| \le ||x|| \cdot ||y||$,
- (4) (Triangle inequality) $||x + y|| \le ||x|| + ||y||$.

Examples:

- (1) The usual dot product for \mathbb{R}^n over \mathbb{R} : $\langle x, y \rangle = \sum_{1 \le i \le n} x_i y_i$;
- (2) The conjugate dot product for \mathbb{C}^n over \mathbb{C} : $\langle x, y \rangle = \overline{\Sigma}_{1 \le i \le n} x_i \bar{y}_i$;

Definition 13. Let V be an inner product space. Two vectors x, y in V are called **orthogonal** (or perpendicular) if $\langle x, y \rangle = 0$.

A vector x in V is called **normal** if ||x|| = 0.

A set S is called **orthonormal** if any two vectors from S are orthogonal and each $x \in S$ is normal.

Lemma 14. If S is a set of pairwise orthogonal nonzero vectors, then S is linearly independent. So, orthonormal sets are linearly independent.

Proof. Suppose

$$a_1v_1 + \dots + a_kv_k = 0$$

for vectors $v_1, ..., v_k$ in S. Suppose for contradiction some of the a_i 's are non zero. By rearranging if necessary, we may assume that $a_1 \neq 0$. Then

$$0 = \langle a_1v_1 + \ldots + a_kv_k, v_1 \rangle = a_1 \langle v_1, v_1 \rangle + a_2 \langle v_2, v_1 \rangle + \ldots a_k \langle v_k, v_1 \rangle = a_1 \langle v_1, v_1 \rangle.$$

By assumption $v_1 \neq \vec{0}$, and so by the properties of inner products $\langle v_1, v_1 \rangle > 0$, so $a_1 = 0$. Contradiction

Using a process called Gram-Schmidt orthogonalization, we can obtain an orthonormal set from any basis, and get the following theorem:

Theorem 15. Let V be an inner product space of dimension n > 0. Then there is an orthonormal basis for V (ONB).

Example: the standard basis is an ONB for F^n .

The next lemma illustrates the usefulness of ONBs, in the sense that we can determine in advance the coefficients of linear combinations and matrix representations.

Lemma 16. If $\beta := \{v_1, ..., v_n\}$ is an ONB for V and $T : V \to V$ is linear, then

(1) For every $x \in V$,

 $x = \langle x, v_1 \rangle v_1 + \langle x, v_2 \rangle v_2 + \ldots + \langle x, v_n \rangle v_n$

(2) If $A = [T]_{\beta}$, then the (i, j)-th entry of the matrix is $A_{ij} = \langle T(v_j), v_i \rangle$.

Proof. We show the first part. The second is left as an exercise. Fix $x \in V$. Say $x = a_1v_1 + \ldots + a_nv_n$. Then for each $1 \le i \le n$,

$$\langle x, v_i \rangle = \langle a_1 v_1 + \dots + a_n v_n, v_1 \rangle = \sum_k a_k \langle v_k, v_i \rangle = a_i \langle v_i, v_i \rangle = a_i.$$

The above is since for $k \neq i$, $\langle v_k, v_i \rangle = 0$ and $\langle v_i, v_i \rangle = 1$.

Definition 17. Let $S \subset V$ be nonempty, V a inner product space. The orthogonal complement of S is

$$S^{\perp} = \{ x \in V \mid \langle x, y \rangle = 0 \text{ for all } y \in S \}$$

Fact 18. For any nonempty set S, S^{\perp} is a subspace.

A couple of examples:

• $\{\vec{0}\}^{\perp} = V; V^{\perp} = \{\vec{0}\},$ • in $F^3, \{e_1\}^{\perp} = Span(\{e_2, e_3\}).$

6.3, 6.4 Adjoint operators and the Spectral theorem

Let us first look at matrices:

Definition 19. Let $A \in M_{m \times n}(F)$. The conjugate transpose of A is the $n \times m$ matrix A^* given by setting $A^*_{ij} = \bar{A}_{ji}$ i.e. we take the conjugate of each entry and transpose it. We also write $A^* = \bar{A}^t$.

We can also define the adjoint for a linear transformations in general.

Theorem 20. Let $T: V \to V$ be a linear operator on a finite dimensional inner product space. Then there is a linear transformation $T^*: V \to V$, such that for all $x, y \in V$,

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle.$$

 T^* is called the **adjoint** of T. Moreover, if β is an ONB, then $[T^*]_{\beta} = [T]^*_{\beta}$.

The following is a key lemma:

Theorem 21. (Schur) Suppose that the characteristic polynomial of T splits. Then there is an ONB β such that $[T]_{\beta}$ is upper triangular.

Proof. (Outline) By induction on dim(V). The idea is to pick one eigenvalue (it exists since the characteristic polynomial splits), then a corresponding eigenvector z. Then prove that $W := Span(z)^{\perp}$ is T-invariant and apply the inductive hypothesis to T_W .

Next we give a condition for a diagonalizability over \mathbb{R} .

Definition 22. A linear transformation $T: V \to V$ is self-adjoint (Hermitian) if $T = T^*$. Similarly, a matrix A is self-adjoint (Hermitian) if $A = A^*$.

Lemma 23. If T is self adjoint, then every eigenvalue is real and the characteristic polynomial splits over \mathbb{R} .

Proof. Suppose that λ is an eigenvalue with eigenvector x. Then $\lambda \langle x, x \rangle = \langle \lambda x, x \rangle = \langle T(x), x \rangle = \langle x, T^*(x) \rangle = \langle x, T(x) \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle$. Then $\lambda = \overline{\lambda}$, and so it is real.

Let f(t) be the characteristic polynomial. Then f(t) splits over \mathbb{C} . But since every eigenvalue is real, every root of f(t) is real, and so it must split over \mathbb{R} .

Theorem 24. (Spectral theorems for real spaces) Suppose that $T: V \to V$ is linear, V is a finite dimensional real inner product space. Then T is self adjoint iff it has an ONB of eigenvectors.

Proof. By the above lemma the characteristic polynomial of T splits. So by theorem 21, let β be ONB such that $A := [T]_{\beta}$ is upper triangular. Then $[T^*]_{\beta} = A^*$ has to be lower triangular. But since $A = A^*$, it follows that A is diagonal. So β is a basis of eigenvectors and T is diagonalizable.

In other words, symmetric real matrices are diagonalizable.

Below we briefly state (without proofs), the case of complex spaces.

Definition 25. $T: V \to V$ is normal if $TT^* = T^*T$.

Theorem 26. (Spectral theorem for complex spaces) Suppose that $T: V \rightarrow V$ is linear, V is a finite dimensional complex inner product space. Then T is normal iff it has an ONB of eigenvectors.

8