MATH 320 NOTES, WEEK 15

5.4 Invariant Subspaces and Cayley-Hamilton theorem

The goal of this section is to prove the Cayley-Hamilton theorem:
Theorem 1. Let $T: V \rightarrow V$ be a linear operator, V finite dimensional, and let $f(t)$ be the characteristic polynomial of T. Then $f(T)=T_{0}$ i.e. the zero linear transformation. In other words T is a root of its own characteristic polynomial.

Here, if $f(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\ldots+a_{1} t+a_{0}$, plugging in T means the transformation

$$
f(T)=a_{n} T^{n}+a_{n-1} T^{n-1}+\ldots+a_{1} T+a_{0} I
$$

Let us give some simple examples:
Example 1 The identity $I: F^{3} \rightarrow F^{3}$ has characteristic polynomial $f(t)=$ $(1-t)^{3}$. Then $f(I)=(I-I)^{3}=T_{0}$.
Example 2 Let $A=\left(\begin{array}{lll}1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$. Then the characteristic polynomial is $f(t)=(1-t)^{2}(2-t)$, and $f(A)=(A-I)^{2}\left(2 I_{3}-A\right)=\left(\begin{array}{lll}0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)^{2}\left(\begin{array}{lll}1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)=$
O.

We will prove the main theorem by using invariant subspaces and showing that if W is T-invariant, then the characteristic polynomial of $T \upharpoonright W$ divides the characteristic polynomial of T. So, let us recall the definition of a T invariant space:
Definition 2. Given a linear transformation $T: V \rightarrow V$, a subspace $W \subset V$ is called T-invariant if for all $x \in W, T(x) \in W$. For such $a W$, let $T_{W}: W \rightarrow W$ denote the linear transformation obtained by restricting T to W i.e. for all $x \in W, T_{W}(x)=T(x) \in W$.

Examples:
(1) $V,\{\overrightarrow{0}\}$,
(2) $\operatorname{ker}(T), \operatorname{ran}(T)$,
(3) E_{λ} for any eigenvalue λ for T.

Let us prove the last item: suppose that $v \in E_{\lambda}$. We have to show that $T(v) \in E_{\lambda}$. Denote $y=T(v)$ and compute

$$
T(y)=T(T(v))=T(\lambda v)=\lambda T(v)=\lambda y
$$

So, y is also an eigenvector for λ. Then $y=T(v) \in E_{\lambda}$ as desired.
Next we give another important example of an invariant subspace.
Lemma 3. Suppose that $T: V \rightarrow V$ is a linear transformation, and let $x \in V$. Then

$$
W:=\operatorname{Span}\left(\left\{x, T(x), T^{2}(x), \ldots\right\}\right)
$$

is a T-invariant subspace. Moreover, if Z is any other T-invariant subspace that contains x, then $W \subset Z$.

Proof. First we show that W is T-invariant: let $y \in W$. We have to show that $T(y) \in W$. Since $y \in W$, by definition, for some natural number n, $y=T^{n}(x)$. Then $T(y)=T^{n+1}(x) \in W$.

Now suppose that Z is another T-invariant subspace with $x \in Z$.
Claim 4. For every $n \geq 1, T^{n}(x) \in Z$.
Proof. For the base case $n=1$, since $x \in Z$ and Z is T-invariant, it follows that $T(x) \in Z$.

For the inductive case, suppose that $T^{n}(x) \in Z$. Then again, by T invariance, we have that $T^{n+1}(x) \in Z$.

By the claim, we get that $W \subset Z$.
W as above is called the T-cyclic subspace of V generated by x.
Example. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $T(\langle a, b, c\rangle)=\langle 2 a, a+b, 0\rangle$. Find the T-cyclic subspace of V generated by e_{1}.

Solution:

- $T\left(e_{1}\right)=\langle 2,1,0\rangle$,
- $T^{2}\left(e_{1}\right)=T(\langle 2,1,0\rangle)=\langle 4,3,0\rangle$, and so on

Note that $T^{2}\left(e_{1}\right)$ is a linear combination of $e_{1}, T\left(e_{1}\right)$. Similarly, for any n, $T^{n}\left(e_{1}\right)=\left\langle a_{1}, a_{2}, 0\right\rangle$ for some a_{1}, a_{2}, and so it is a linear combination of e_{1} and $T\left(e_{1}\right)$. It follows, that the T-cyclic subspace of V generated by e_{1} is $\operatorname{Span}\left(\left\{e_{1}, T\left(e_{1}\right)\right\}\right)=\left\{\left\langle a_{1}, a_{2}, 0\right\rangle \mid a_{1}, a_{2} \in \mathbb{R}\right\}=\operatorname{Span}\left(\left\{e_{1}, e_{2}\right\}\right)$.

Our next lemma generalizes the above example:
Lemma 5. Suppose that $T: V \rightarrow V$ is linear, let W be the T-invariant cyclic subspace generated by x (nonzero vector) with $\operatorname{dim}(W)=k$. Then $\left\{x, T(x), \ldots, T^{k-1}(x)\right\}$ is a basis for W
Proof. Let m be the largest such that $\alpha=\left\{x, T(x), \ldots, T^{m-1}(x)\right\}$ is a linearly independent. Such m has to exists because W is finite dimensional. Then we have:

- $m \leq k$, since $\alpha \subset W$ and $\operatorname{dim}(W)=k$, and
- $T^{m}(x) \in \operatorname{Span}(\alpha)$, by definition of m.

Let $Z=\operatorname{Span}(\alpha)$. We claim that $Z=W$. We know that $Z \subset W$ because $\alpha \subset W$. For the other direction, by the second part of Lemma 3, it is enough to show that Z is T-invariant.

To that end, let $y \in Z$; write is a linear combination of the vectors in α,

$$
y=a_{1} x+a_{2} T(x)+\ldots+a_{m} T^{m-1}(x) .
$$

Compute
$T(y)=T\left(a_{1} x+a_{2} T(x)+\ldots+a_{m} T^{m-1}(x)\right)=a_{1} T(x)+a_{2} T^{2}(x)+\ldots+a_{m} T^{m}(x)$.
This is a linear combination of vectors in α and $T^{m}(x)$. Since $T^{m}(x) \in$ $\operatorname{Span}(\alpha)$, we get $T(y) \in \operatorname{Span}(\alpha)=Z$.

Then α is a basis for W, and so $m=|\alpha|=k$.
Before we prove that the characteristic polynomial of T_{W} divides the characteristic polynomial of T where W is T-invariant, we need the following fact.

Fact 6. Suppose we have an $n \times n$ matrix B of the form

$$
B=\left(\begin{array}{cc}
A & C \\
0 & D
\end{array}\right)
$$

Where A is a $k \times k$ matrix. Then $\operatorname{det}(A) \cdot \operatorname{det}(D)$
Proof. The proof is by induction on k, expanding along the first column.
Lemma 7. Suppose that $T: V \rightarrow V$ is linear, V finite dimensions, and W is a T-invariant subspace. Let $T_{W}: W \rightarrow W$ be the linear transformation obtained by T restricted to W. Then the characteristic polynomial of T_{W} divides the characteristic polynomial of T.
Proof. Let $\alpha=\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for W, and extend α to a basis $\beta=$ $\left\{v_{1}, \ldots v_{k}, \ldots v_{n}\right\}$ for V. Let $A=\left[T_{W}\right]_{\alpha}$ and $B=[T]_{\beta}$. Then

$$
B=\left(\begin{array}{cc}
A & C \\
0 & D
\end{array}\right)
$$

So,

$$
\left(B-t I_{n}\right)=\left(\begin{array}{cc}
A-t I_{k} & C \\
0 & D-t I_{n-k}
\end{array}\right)
$$

Then $\operatorname{det}\left(B-t I_{n}\right)=\operatorname{det}\left(A-t I_{n}\right) g(t)$. Since the characteristic polynomial of T_{W} is $\operatorname{det}\left(A-t I_{n}\right)$ and the characteristic polynomial of T is $\operatorname{det}\left(B-t I_{n}\right)$, the result follows.

Lemma 8. Suppose that $T: V \rightarrow V$ is linear, V finite dimensional, and let W be the T-invariant cyclic subspace generated by x (nonzero vector) with $\operatorname{dim}(W)=k$. Then there are unique scalars a_{0}, \ldots, a_{k-1}, such that

- $a_{0} x+a_{1} T(x)+\ldots a_{k-1} T^{k-1}(x)+T^{k}(x)=\overrightarrow{0}$, and
- the characteristic polynomial of T_{W} is

$$
f(t)=(-1)^{k}\left(a_{0}+a_{1} t+\ldots a_{k-1} t^{k-1}+t^{k}\right) .
$$

Proof. Recall that we proved $\alpha=\left\{x, T(x), \ldots, T^{k-1}(x)\right\}$ is a basis for W. That means that $T^{k}(x)$ is the span of these vectors and the linear combination is unique. So for some unique scalars a_{0}, \ldots, a_{k-1}, we get:

$$
a_{0} x+a_{1} T(x)+\ldots+a_{k-1} T^{k-1}(x)+T^{k}(x)=\overrightarrow{0} .
$$

Next we compute $\left[T_{W}\right]_{\alpha}$. We have:

- $T_{W}(x)=0 x+T(x)+0 \ldots+0$, so $\left[T_{W}(x)\right]_{\alpha}=\langle 0,1,0, \ldots 0\rangle$,
- $T_{W}(T(x))=T^{2}(x)=T_{W}^{2}(x)$, so $\left[T_{W}(x)\right]_{\alpha}=\langle 0,0,1, \ldots 0\rangle$,
- $T_{W}\left(T^{k-1}(x)\right)=T^{k}(x)=-1\left(a_{0} x+a_{1} T(x)+\ldots a_{k-1} T^{k-1}(x)\right)$, and so $\left[T_{W}\left(T^{k-1}(x)\right)\right]_{\alpha}=\left\langle-a_{0},-a_{1}, \ldots-a_{k-1}\right\rangle$,
Then

$$
\left[T_{W}\right]_{\alpha}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{1} \\
1 & 0 & \ldots & 0 & -a_{2} \\
\vdots & & & & \\
0 & 0 & \ldots & 1 & -a_{k-1}
\end{array}\right)
$$

One can verify that this matrix has characteristic polynomial

$$
f(t)=(-1)^{k}\left(a_{0}+a_{1} t+\ldots a_{k-1} t^{k-1}+t^{k}\right)
$$

We are finally ready to prove the Cayley-Hamilton theorem:
Proof of Theorem 1. We have to show that T "satisfies" its characteristic polynomial. So let $f(t)$ be the characteristic polynomial of T. Then we have to show that $f(T)$ is the zero linear transformation. So let $x \in V$. We have to show that $f(T)(x)=\overrightarrow{0}$.

Assume that x is nonzero (otherwise it's clear). Let W be the T-cyclic invariant subspace generated by $x ; \operatorname{dim}(W)=k$. By the above lemma, fix coefficients a_{0}, \ldots, a_{k}, such that

- $a_{0} x+a_{1} T(x)+\ldots a_{k-1} T^{k-1}(x)+T^{k}(x)=\overrightarrow{0}$, and
- the characteristic polynomial of T_{W} is

$$
g(t)=(-1)^{k}\left(a_{0}+a_{1} t+\ldots a_{k-1} t^{k-1}+t^{k}\right) .
$$

Then,

$$
\begin{gathered}
g(T)(x)=(-1)^{k}\left(a_{0} I+a_{1} T+\ldots a_{k-1} T^{k-1}+T^{k}\right)(x)= \\
(-1)^{k}\left(a_{0} x+a_{1} T(x)+\ldots a_{k-1} T^{k-1}(x)+T^{k}(x)\right)=\overrightarrow{0} .
\end{gathered}
$$

And since g divides f, we get that $f(T)(x)=0$.

6.1, 6.2 Inner Product Spaces and ONB

Let $c \in F$, we will use \bar{c} to denote complex conjugation. I.e. if $c=a+b i$, then $\bar{c}=a-b i$. If $c \in \mathbb{R}$, then $\bar{c}=c$.

Definition 9. Let V be a vector space over F. V is an inner product space, if we can define an inner product function on pairs of vectors to values in F,

$$
(x, y) \mapsto\langle x, y\rangle \in F
$$

with the following properties:
(1) $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$
(2) $\langle c x, y\rangle=c\langle x, y\rangle$,
(3) $\langle x, y\rangle=\langle y, x\rangle$,
(4) if $x \neq \overrightarrow{0},\langle x, x\rangle>0$,

Definition 10. Let V be an inner product space. For $x \in V$, define the norm of x,

$$
\|x\|=\sqrt{\langle x, x\rangle}
$$

Lemma 11. (Properties of inner product spaces) Let V be an inner product space, and $x, y, z \in V, c \in F$. Then
(1) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$
(2) $\langle x, c y\rangle=\bar{c}\langle x, y\rangle$,
(3) $\langle x, 0\rangle=\langle 0, x\rangle=0$,
(4) $\langle x, x\rangle=0$ iff if $x=\overrightarrow{0}$,
(5) if $\langle x, y\rangle=\langle x, z\rangle$ for all x, then $y=z$.

Lemma 12. (Properties of norms) Let V be an inner product space over F, and $x, y, z \in V, c \in F$. Then
(1) $\|c x\|=|c| \cdot\|x\|$,
(2) $\|x\| \geq 0,\|x\|=0$ iff if $x=\overrightarrow{0}$,
(3) (Cauchy-Schwarz inequality) $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$,
(4) (Triangle inequality) $\|x+y\| \leq\|x\|+\|y\|$.

Examples:
(1) The usual dot product for \mathbb{R}^{n} over $\mathbb{R}:\langle x, y\rangle=\Sigma_{1 \leq i \leq n} x_{i} y_{i}$;
(2) The conjugate dot product for \mathbb{C}^{n} over $\mathbb{C}:\langle x, y\rangle=\bar{\Sigma}_{1 \leq i \leq n} x_{i} \bar{y}_{i}$;

Definition 13. Let V be an inner product space. Two vectors x, y in V are called orthogonal (or perpendicular) if $\langle x, y\rangle=0$.
A vector x in V is called normal if $\|x\|=0$.
A set S is called orthonormal if any two vectors from S are orthogonal and each $x \in S$ is normal.

Lemma 14. If S is a set of pairwise orthogonal nonzero vectors, then S is linearly independent. So, orthonormal sets are linearly independent.

Proof. Suppose

$$
a_{1} v_{1}+\ldots+a_{k} v_{k}=\overrightarrow{0}
$$

for vectors $v_{1}, \ldots v_{k}$ in S. Suppose for contradiction some of the a_{i} 's are non zero. By rearranging if necessary, we may assume that $a_{1} \neq 0$. Then
$0=\left\langle a_{1} v_{1}+\ldots+a_{k} v_{k}, v_{1}\right\rangle=a_{1}\left\langle v_{1}, v_{1}\right\rangle+a_{2}\left\langle v_{2}, v_{1}\right\rangle+\ldots a_{k}\left\langle v_{k}, v_{1}\right\rangle=a_{1}\left\langle v_{1}, v_{1}\right\rangle$.
By assumption $v_{1} \neq \overrightarrow{0}$, and so by the properties of inner products $\left\langle v_{1}, v_{1}\right\rangle>$ 0 , so $a_{1}=0$. Contradiction

Using a process called Gram-Schmidt orthogonalization, we can obtain an orthonormal set from any basis, and get the following theorem:

Theorem 15. Let V be an inner product space of dimension $n>0$. Then there is an orthonormal basis for V (ONB).

Example: the standard basis is an ONB for F^{n}.
The next lemma illustrates the usefulness of ONBs, in the sense that we can determine in advance the coefficients of linear combinations and matrix representations.

Lemma 16. If $\beta:=\left\{v_{1}, \ldots, v_{n}\right\}$ is an $O N B$ for V and $T: V \rightarrow V$ is linear, then
(1) For every $x \in V$,

$$
x=\left\langle x, v_{1}\right\rangle v_{1}+\left\langle x, v_{2}\right\rangle v_{2}+\ldots+\left\langle x, v_{n}\right\rangle v_{n}
$$

(2) If $A=[T]_{\beta}$, then the (i, j)-th entry of the matrix is $A_{i j}=\left\langle T\left(v_{j}\right), v_{i}\right\rangle$.

Proof. We show the first part. The second is left as an exercise. Fix $x \in V$. Say $x=a_{1} v_{1}+\ldots+a_{n} v_{n}$. Then for each $1 \leq i \leq n$,

$$
\left\langle x, v_{i}\right\rangle=\left\langle a_{1} v_{1}+\ldots+a_{n} v_{n}, v_{1}\right\rangle=\Sigma_{k} a_{k}\left\langle v_{k}, v_{i}\right\rangle=a_{i}\left\langle v_{i}, v_{i}\right\rangle=a_{i}
$$

The above is since for $k \neq i,\left\langle v_{k}, v_{i}\right\rangle=0$ and $\left\langle v_{i}, v_{i}\right\rangle=1$.

Definition 17. Let $S \subset V$ be nonempty, V a inner product space. The orthogonal complement of S is

$$
S^{\perp}=\{x \in V \mid\langle x, y\rangle=0 \text { for all } y \in S\}
$$

Fact 18. For any nonempty set S, S^{\perp} is a subspace.
A couple of examples:

- $\{\overrightarrow{0}\}^{\perp}=V ; V^{\perp}=\{\overrightarrow{0}\}$,
- in $F^{3},\left\{e_{1}\right\}^{\perp}=\operatorname{Span}\left(\left\{e_{2}, e_{3}\right\}\right)$.

6.3, 6.4 Adjoint operators and the Spectral theorem

Let us first look at matrices:

Definition 19. Let $A \in M_{m \times n}(F)$. The conjugate transpose of A is the $n \times m$ matrix A^{*} given by setting $A_{i j}^{*}=\bar{A}_{j i}$ i.e. we take the conjugate of each entry and transpose it. We also write $A^{*}=\bar{A}^{t}$.

We can also define the adjoint for a linear transformations in general.
Theorem 20. Let $T: V \rightarrow V$ be a linear operator on a finite dimensional inner product space. Then there is a linear transformation $T^{*}: V \rightarrow V$, such that for all $x, y \in V$,

$$
\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle .
$$

T^{*} is called the adjoint of T.
Moreover, if β is an $O N B$, then $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$.
The following is a key lemma:
Theorem 21. (Schur) Suppose that the characteristic polynomial of T splits. Then there is an ONB β such that $[T]_{\beta}$ is upper triangular.

Proof. (Outline) By induction on $\operatorname{dim}(V)$. The idea is to pick one eigenvalue (it exists since the characteristic polynomial splits), then a corresponding eigenvector z. Then prove that $W:=\operatorname{Span}(z)^{\perp}$ is T-invariant and apply the inductive hypothesis to T_{W}.

Next we give a condition for a diagonalizability over \mathbb{R}.
Definition 22. A linear transformation $T: V \rightarrow V$ is self-adjoint (Hermitian) if $T=T^{*}$. Similarly, a matrix A is self-adjoint (Hermitian) if $A=A^{*}$.

Lemma 23. If T is self adjoint, then every eigenvalue is real and the characteristic polynomial splits over \mathbb{R}.

Proof. Suppose that λ is an eigenvalue with eigenvector x. Then $\lambda\langle x, x\rangle=$ $\langle\lambda x, x\rangle=\langle T(x), x\rangle=\left\langle x, T^{*}(x)\right\rangle=\langle x, T(x)\rangle=\langle x, \lambda x\rangle=\bar{\lambda}\langle x, x\rangle$. Then $\lambda=\bar{\lambda}$, and so it is real.

Let $f(t)$ be the characteristic polynomial. Then $f(t)$ splits over \mathbb{C}. But since every eigenvalue is real, every root of $f(t)$ is real, and so it must split over \mathbb{R}.

Theorem 24. (Spectral theorems for real spaces) Suppose that $T: V \rightarrow V$ is linear, V is a finite dimensional real inner product space. Then T is self adjoint iff it has an ONB of eigenvectors.

Proof. By the above lemma the characteristic polynomial of T splits. So by theorem 21, let β be ONB such that $A:=[T]_{\beta}$ is upper triangular. Then $\left[T^{*}\right]_{\beta}=A^{*}$ has to be lower triangular. But since $A=A^{*}$, it follows that A is diagonal. So β is a basis of eigenvectors and T is diagonalizable.

In other words, symmetric real matrices are diagonalizable.
Below we briefly state (without proofs), the case of complex spaces.
Definition 25. $T: V \rightarrow V$ is normal if $T T^{*}=T^{*} T$.
Theorem 26. (Spectral theorem for complex spaces) Suppose that $T: V \rightarrow$ V is linear, V is a finite dimensional complex inner product space. Then T is normal iff it has an ONB of eigenvectors.

